Master en Big Data

Master en Big Data - INESEM FormaciónContinua
  • Duración total: 1500 horas
  • Horas teleformación: 450 horas
  • 1495€
  • Online
  • Hasta 100% bonificable
Entidad
Titulacion de INESEM
PROGRAMA EN PDF

Para acceder a la Formación Programada será necesario cumplimentar dos documentos a los que deberás adjuntar una fotocopia de tu DNI y de la cabecera de la última nómina

  1. FICHA DE MATRICULACIÓN
  2. Cumplimentada con tus datos personales y el curso que deseas realizar, que deberá guardar relación con tu puesto de trabajo y/o la actividad de tu empresa

  3. ADHESIÓN AL CONTRATO DE ENCOMIENDA DE ORGANIZACIÓN DE LA FORMACIÓN
  4. Cumplimentada con los datos de su empresa y firmado y sellado por el responsable de formación, Recursos Humanos o el gerente de su empresa

  5. FOTOCOPIA DE TU DNI
  6. Copia de ambas caras de tu documento

  7. CABECERA DE TU ÚLTIMA NÓMINA
  • PRESENTACIÓN
  • TEMARIO
  • METODOLOGÍA
  • Justificación / Resumen
  • Actualmente, en muchos ámbitos multisectoriales, la creciente cantidad de datos y el auge del Internet de las cosas (IoT) presentan la necesidad de analizar y procesar toda esta información para la mejora y adecuación de las estrategias de negocio de las empresas. Además, todas las empresas buscan la reducción de sus costes y mediante la aplicación de las técnicas adecuadas de Big Data este objetivo puede cumplirse.Con este Máster podrás conocer y comprender todos los detalles y objetivos de un proyecto de Big Data y te otorgará la posibilidad de trabajar en proyectos donde se busca la mejor solución sin dejar de lado la escalabilidad de los datos y la seguridad de éstos. Podrás extraer la información de una forma óptima y podrás tomar decisiones estratégicas dentro de las empresas.En INESEM podrás trabajar en un Entorno Personal de Aprendizaje donde el alumno es el protagonista, avalado por un amplio grupo de tutores especialistas en el sector.

  • Requisitos de acceso
  • Esta formación pertenece al programa de Formación Continua de INESEM. Esta formación se tramita con cargo a un crédito que tienen asignado las empresas privadas españolas para la formación de sus empleados sin que les suponga un coste.

    Para tramitar dicha formación es preciso cumplir los siguientes requisitos:

    • Estar trabajando para una empresa privada
    • Encontrarse cotizando en Régimen General de la Seguridad Social
    • Solicitar un curso que esté relacionado con el puesto de trabajo o con la actividad empresarial
    • Que la empresa autorice la formación
    • Que la empresa disponga de suficiente crédito formativo para cubrir el coste del curso
  • Titulación
  • Titulación de Formación Continua Bonificada expedida por el Instituto Europeo de Estudios Empresariales (INESEM). Titulación Expedida y Avalada por el Instituto Europeo de Estudios Empresariales

MÓDULO 1. BIG DATA OVERVIEW
UNIDAD DIDÁCTICA 1. INTRODUCCIÓN AL BIG DATA
  1. ¿Qué es Big Data?
  2. La era de las grandes cantidades de información: historia del big data
  3. La importancia de almacenar y extraer información
  4. Big Data enfocado a los negocios
  5. Open Data
  6. Información pública
  7. IoT (Internet of Things-Internet de las cosas)
UNIDAD DIDÁCTICA 2. FASES DE UN PROYECTO DE BIG DATA
  1. Diagnóstico inicial
  2. Diseño del proyecto
  3. Proceso de implementación
  4. Monitorización y control del proyecto
  5. Responsable y recursos disponibles
  6. Calendarización
  7. Alcance y valoración económica del proyecto
UNIDAD DIDÁCTICA 3. BIG DATA Y MARKETING
  1. Apoyo del Big Data en el proceso de toma de decisiones
  2. Toma de decisiones operativas
  3. Marketing estratégico y Big Data
  4. Nuevas tendencias en management
UNIDAD DIDÁCTICA 4. INTELIGENCIA DE NEGOCIO Y HERRAMIENTAS DE ANALÍTICA
  1. Tipo de herramientas BI
  2. Productos comerciales para BI
  3. Productos Open Source para BI
  4. Beneficios de las herramientas de BI
UNIDAD DIDÁCTICA 5.PRINCIPALES PRODUCTOS DE BUSINESS INTELLIGENCE
  1. Cuadros de Mando Integrales (CMI)
  2. Sistemas de Soporte a la Decisión (DSS)
  3. Sistemas de Información Ejecutiva (EIS)
UNIDAD DIDÁCTICA 6.DEL BIG DATA AL LINKED OPEN DATA
  1. Concepto de web semántica
  2. Linked Data Vs Big Data
  3. Lenguaje de consulta SPARQL
MÓDULO 2. ANÁLISIS DE BIG DATA Y HERRAMIENTAS PARA EXPLOTACIÓN
UNIDAD DIDÁCTICA 1. BASES DE DATOS NOSQL Y EL ALMACENAMIENTO ESCALABLE
  1. ¿Qué es una base de datos NoSQL?
  2. Bases de datos Relaciones Vs Bases de datos NoSQL
  3. Tipo de Bases de datos NoSQL: Teorema de CAP
  4. Sistemas de Bases de datos NoSQL
UNIDAD DIDÁCTICA 2. INTRODUCCIÓN A UN SISTEMA DE BASES DE DATOS NOSQL: MONGODB
  1. ¿Qué es MongoDB?
  2. Funcionamiento y uso de MongoDB
  3. Primeros pasos con MongoDB: Instalación y shell de comandos
  4. Creando nuestra primera Base de Datos NoSQL: Modelo e Inserción de Datos
  5. Actualización de datos en MongoDB: Sentencias set y update
  6. Trabajando con índices en MongoDB para optimización de datos
  7. Consulta de datos en MongoDB
UNIDAD DIDÁCTICA 3. PROCESAMIENTO DISTRIBUIDO DE DATOS CON HADOOP
  1. ¿Qué es Hadoop?
  2. El sistema de archivos HDFS
  3. Algunos comandos de referencia
  4. Procesamiento MapReduce con Hadoop
  5. Clusters en Hadoop
UNIDAD DIDÁCTICA 4. WEKA Y DATA MINING
  1. ¿Qué es Weka?
  2. Técnicas de Data Mining en Weka
  3. Interfaces de Weka
  4. Selección de atributos
UNIDAD DIDÁCTICA 5. PENTAHO UNA SOLUCIÓN OPEN SOURCE PARA BUSINESS INTELLIGENCE
  1. Una aproximación a Pentaho
  2. Soluciones que ofrece Pentaho
  3. MongoDB & Pentaho
  4. Hadoop & Pentaho
  5. Weka & Pentaho
UNIDAD DIDÁCTICA 6. ANALIZAR LA INFORMACIÓN CUALITATIVA
  1. Introducción
  2. La usabilidad web
  3. Pruebas online y a Distancia
  4. Las encuestas
UNIDAD DIDÁCTICA 7. CI: INTELIGENCIA COMPETITIVA
  1. Introducción
  2. Recopilar datos de Inteligencia Competitiva
  3. Análisis del tráfico de sitios web
  4. Búsquedas
MÓDULO 3. FUNDAMENTOS Y PLANIFICACIÓN DE LA MÉTRICA DIGITAL
UNIDAD DIDÁCTICA 1. ¿QUÉ ES LA ANALÍTICA WEB?
  1. Introducción
  2. La Analítica Web: Un reto cultural
  3. ¿Qué puede hacer la analítica web por ti o tu empresa?
  4. Glosario de Analítica Web
UNIDAD DIDÁCTICA 2. ANALÍTICA WEB BÁSICA
  1. La analítica web en la actualidad
  2. Definiendo la analítica web
  3. El salto a la analítica web moderna
UNIDAD DIDÁCTICA 3. INTRODUCCIÓN AL ANÁLISIS Y MÉTRICA WEB
  1. Conceptos básicos
  2. Métricas para el análisis web
UNIDAD DIDÁCTICA 4. MÁS ALLÁ DE LOS DATOS
  1. Segmentación en base al comportamiento
  2. Predicción y minería de datos
  3. Rumbo a la analítica inteligente
MÓDULO 4. HERRAMIENTAS DE ANALÍTICA WEB
UNIDAD DIDÁCTICA 1. CRM EN EL MEDIO ONLINE
  1. Conceptos básicos de gestión de clientes y CRM
  2. Remarketing
  3. Tipos de clientes
  4. Estrategias y herramientas de gestión de clientes
  5. Métricas de fidelización
  6. Aplicación de diferentes herramientas a casos de empresas
UNIDAD DIDÁCTICA 2. INTRODUCCIÓN A HERRAMIENTAS DE ANALÍTICA WEB
  1. Listado de herramientas
  2. Herramientas de analítica web
  3. Herramientas de análisis de logs
  4. Herramientas de medición mediante tags
  5. Herramientas para medir el rendimiento de nuestro sitio web
  6. Herramientas para recoger información de diseño y usabilidad web
  7. Herramientas que analizan nuestra actividad en redes sociales
  8. Herramientas de inteligencia competitiva
UNIDAD DIDÁCTICA 3. EL ANALIZADOR DE TRÁFICO WEB PIWIK
  1. ¿Qué es PIWIK?
  2. Instalación y Configuración
  3. Integración con otras aplicaciones
UNIDAD DIDÁCTICA 4. PROBLEMAS Y SOLUCIONES DE LA ANALÍTICA WEB
  1. La calidad de los datos
  2. Obtener datos válidos
  3. ¿En qué basarnos para la toma de decisiones?
  4. Beneficios de análisis multicanal
MÓDULO 5.CUADRO DE MANDO Y DASHBOARD
UNIDAD DIDÁCTICA 1. DEFINICIÓN DE KPIS
  1. Definición de KPIs
  2. KPI, CSF y metas
  3. Principales KPIS
  4. Ejemplos de KPIS
  5. Supuesto práctico: Cálculo de KPI con Excel
UNIDAD DIDÁCTICA 2. CONCEPTO Y CREACIÓN DE CUADROS DE MANDO
  1. Introducción a los cuadros de mando y dashboard
  2. Estrategias para la creación de un cuadro de mando
  3. Dashboard en Excel o Google Analytics
UNIDAD DIDÁCTICA 3.HERRAMIENTAS PARA LA CREACIÓN DE CUADROS DE MANDO
  1. Aplicaciones gratuitas
  2. Aplicaciones propietarias
MÓDULO 6. INTRODUCCIÓN A LA PROGRAMACIÓN ESTADÍSTICA
UNIDAD DIDÁCTICA 1. PYTHON Y EL ANÁLISIS DE DATOS
  1. Introducción a Python
  2. ¿Qué necesitas?
  3. Librerías para el análisis de datos en Python
  4. MongoDB, Hadoop y Python: Dream Team del Big Data
UNIDAD DIDÁCTICA 2. R COMO HERRAMIENTA PARA BIG DATA
  1. Introducción a R
  2. ¿Qué necesitas?
  3. Tipos de datos
  4. Estadística Descriptiva y Predictiva con R
  5. Integración de R en Hadoop
MÓDULO 7. DATA SCIENCE
UNIDAD DIDÁCTICA 1. INTRODUCCIÓN A LA CIENCIA DE DATOS
  1. ¿Qué es la ciencia de datos?
  2. Herramientas necesarias para el científico de datos
  3. Data Science & Cloud Compunting
  4. Aspectos legales en Protección de Datos
UNIDAD DIDÁCTICA 2. BASES DE DATOS RELACIONALES
  1. Introducción
  2. El modelo relacional
  3. Lenguaje de consulta SQL
  4. MySQL: Una base de datos relacional
UNIDAD DIDÁCTICA 3. PRE-PROCESAMIENTO & PROCESAMIENTO DE DATOS
  1. Obtención y limpieza de los datos (ETL)
  2. Inferencia estadística
  3. Modelos de regresión
  4. Pruebas de hipótesis
UNIDAD DIDÁCTICA 4. ANÁLISIS DE LOS DATOS
  1. Inteligencia analítica de negocios
  2. La teoría de grafos y el análisis de redes sociales
  3. Presentación de resultados
MÓDULO 8. CLOUD COMPUTING CON AZURE Y LINUX
UNIDAD DIDÁCTICA 1. CLOUD COMPUTING
  1. Introducción al Cloud computing
  2. Modo de trabajo y funcionamiento
  3. Virtualización
  4. Tipos de Cloud
  5. Niveles de Programación
  6. Historia
  7. Ventajas e inconvenientes
  8. Análisis DAFO
UNIDAD DIDÁCTICA 2. AGENTES QUE INTERVIENEN EN EL CLOUD COMPUTING
  1. El Cloud Computing y el departamento IT
  2. Niveles del Cloud Computing
  3. ¿Qué es la virtualización?
  4. Centros de datos para Cloud
UNIDAD DIDÁCTICA 3. PROYECTO DE CLOUD COMPUTING
  1. Ventajas y desventajas del Cloud Computing
  2. Análisis DAFO de la implantación del Cloud
UNIDAD DIDÁCTICA 4. SEGURIDAD Y ASPECTOS LEGALES DEL CLOUD COMPUTING
  1. (LOPD) Ley de Protección de Datos
  2. Propiedad intelectual
  3. Relaciones laborales
  4. Los retos del Cloud Computing
  5. Implementación de la seguridad en el Cloud Computing
  6. Análisis forense en el Cloud Computing
  7. Cloud Security Alliance (CSA)
UNIDAD DIDÁCTICA 5. TOPOLOGÍA
  1. Tipos de nube
  2. Tipo de cloud que debo de usar
  3. La topología en el ámbito de los servicios cloud
UNIDAD DIDÁCTICA 6. AZURE
  1. Plataforma Windows Azure
  2. Usuario: modo de acceso y trabajo
  3. Administración de Azure
  4. Virtualización con Azure
  5. Vista programador
  6. Servicios de Azure
  7. Bases de Datos con Azure
  8. Programación en Azure
UNIDAD DIDÁCTICA 7. LINUX
  1. Distribuciones Linux en la Nube
  2. Usuario: modo de acceso y trabajo
  3. Administración
  4. Virtualización con Linux
  5. Vista programador
  6. Servicios en Linux
  7. Bases de Datos en Linux
  8. Programación en la Nube bajo Linux
UNIDAD DIDÁCTICA 8. SERVICIOS
  1. Acceso a servicios misma plataforma
  2. Acceso a servicios diferentes plataforma
  3. Interoperabilidad
  4. Futuro de los Servicios Cloud Computing
MÓDULO 9. PROYECTO FIN DE MÁSTER

Una vez finalizado el proceso de matriculación, el alumno empieza su andadura en INESEM Formación Continua a través de nuestro Campus Virtual.

La metodología INESEM Business School, ha sido diseñada para acercar el aula al alumno dentro de la formación online. De esta forma es tan importante trabajar de forma activa en la plataforma, como necesario el trabajo autónomo de este. El alumno cuenta con una completa acción formativa que incluye además del contenido teórico, objetivos, mapas conceptuales, recuerdas, autoevaluaciones, bibliografía, exámenes, actividades prácticas y recursos en forma de documentos descargables, vídeos, material complementario, normativas, páginas web, etc.

A esta actividad en la plataforma hay que añadir el tiempo asociado a la formación dedicado a horas de estudio. Estos son unos completos libros de acceso ininterrumpido a lo largo de la trayectoria profesional de la persona, no solamente durante la formación. Según nuestra experiencia, gran parte del alumnado prefiere trabajar con ellos de manera alterna con la plataforma, si bien la realización de autoevaluaciones de cada unidad didáctica y evaluación de módulo, solamente se encuentra disponible de forma telemática.

El alumno deberá avanzar a lo largo de las unidades didácticas que constituyen el itinerario formativo, así como realizar las actividades y autoevaluaciones correspondientes. Al final del itinerario encontrará un examen final o exámenes. A fecha fin de la acción formativa el alumno deberá haber visitado al menos el 100 % de los contenidos, haber realizado al menos el 75 % de las actividades de autoevaluación, haber realizado al menos el 75 % de los exámenes propuestos y los tiempos de conexión alcanzados deberán sumar en torno al 75 % de las horas de la teleformación de su acción formativa. Dicho progreso se contabilizará a través de la plataforma virtual y puede ser consultado en cualquier momento.

La titulación será remitida al alumno por correo postal una vez se haya comprobado que ha completado el proceso de aprendizaje satisfactoriamente.

Por último, el alumno contará en todo momento con:

CLAUSTRO DOCENTE

Ofrecerá un minucioso seguimiento al alumno, resolviendo sus dudas e incluso planteando material adicional para su aprendizaje profesional.

COMUNIDAD

En la que todos los alumos de INESEM podrán debatir y compartir su conocimiento.

MATERIAL ADICIONAL

De libre acceso en el que completar el proceso formativo y ampliar los conocimientos de cada área concreta. Podrá encontrarlo en Revista Digital, INESEM y MasterClass INESEM, puntos de encuentro entre profesionales que comparten sus conocimientos.

Opiniones de los alumnos

CURSOS BONIFICADOS RELACIONADOS

SGBD e Instalación (Online) - INESEM FormaciónContinua

MATRICULARME

SGBD e Instalación (Online)

350€Hasta 100% bonificable
  • 70 horas
  • Programa formativo
  • INESEM Formación Continua

12

Años de experiencia en la gestión de formación

5789

Alumnos han confiado en INESEM

+200

Profesionales de la educación a tu servicio
 
Soporte Técnico FORMACIÓN CONTINUA
Soporte Técnico FORMACIÓN CONTINUA