Comunicado COVID-19

Seguimos trabajando y atendiendo a alumnos actuales y futuros

Ampliar información

Curso Superior de Inteligencia Artificial Aplicada a los Negocios

  • Duración total: 300 horas
  • Horas teleformación: 150 horas
  • 480€
  • Online
  • Hasta 100% bonificable
Entidad
INESEM Business School
PROGRAMA EN PDF

Para acceder a la Formación Programada será necesario cumplimentar dos documentos a los que deberás adjuntar una fotocopia de tu DNI y de la cabecera de la última nómina

  1. FICHA DE MATRICULACIÓN
  2. Cumplimentada con tus datos personales y el curso que deseas realizar, que deberá guardar relación con tu puesto de trabajo y/o la actividad de tu empresa

  3. ADHESIÓN AL CONTRATO DE ENCOMIENDA DE ORGANIZACIÓN DE LA FORMACIÓN
  4. Cumplimentada con los datos de su empresa y firmado y sellado por el responsable de formación, Recursos Humanos o el gerente de su empresa

  5. FOTOCOPIA DE TU DNI
  6. Copia de ambas caras de tu documento

  7. CABECERA DE TU ÚLTIMA NÓMINA
  • PRESENTACIÓN
  • TEMARIO
  • METODOLOGÍA
  • Justificación / Resumen
  • Este Curso Superior de Inteligencia Artificial aplicada a los negocios proporciona formación en un ámbito cada vez más demandado por las empresas que apuestan por el desarrollo de software y sistemas inteligentes gracias a la inteligencia artificial, el Machine Learning, el Deep Learning y el procesamiento de lenguaje natural (PLN), así como la construcción de sistemas artificiales con capacidad de interacción con su entorno y los usuarios.El Curso Superior de Inteligencia Artificial aplicada a los negocios busca formar a profesionales en uno de los sectores laborales más demandados en la actualidad, el del comportamiento inteligente y automatizado de cualquier sistema. Si eres un apasionado de las nuevas tecnologías y tienes inquietudes sobre todo lo que nos depara el futuro tecnológico, este es tu curso. En INESEM podrás trabajar en un Entorno Personal de Aprendizaje donde el alumno es el protagonista asesorado por un equipo docente especialista en el sector.

  • Requisitos de acceso
  • Esta formación pertenece al programa de Formación Continua de INESEM. Esta formación se tramita con cargo a un crédito que tienen asignado las empresas privadas españolas para la formación de sus empleados sin que les suponga un coste.

    Para tramitar dicha formación es preciso cumplir los siguientes requisitos:

    • Estar trabajando para una empresa privada
    • Encontrarse cotizando en Régimen General de la Seguridad Social
    • Solicitar un curso que esté relacionado con el puesto de trabajo o con la actividad empresarial
    • Que la empresa autorice la formación
    • Que la empresa disponga de suficiente crédito formativo para cubrir el coste del curso
  • Titulación
  • Titulación de Formación Continua Bonificada expedida por el Instituto Europeo de Estudios Empresariales (INESEM). Titulación Expedida y Avalada por el Instituto Europeo de Estudios Empresariales

MÓDULO 1. INTELIGENCIA ARTIFICIAL (IA), MACHINE LEARNING (ML) Y DEEP LEARNING (DL)
UNIDAD DIDÁCTICA 1. INTRODUCCIÓN A LA INTELIGENCIA ARTIFICIAL
  1. Introducción a la inteligencia artificial
  2. Historia
  3. La importancia de la IA
UNIDAD DIDÁCTICA 2. TIPOS DE INTELIGENCIA ARTIFICIAL
  1. Tipos de inteligencia artificial
UNIDAD DIDÁCTICA 3. ALGORITMOS APLICADOS A LA INTELIGENCIA ARTIFICIAL
  1. Algoritmos aplicados a la inteligencia artificial
UNIDAD DIDÁCTICA 4. RELACIÓN ENTRE INTELIGENCIA ARTIFICIAL Y BIG DATA
  1. Relación entre inteligencia artificial y big data
  2. IA y Big Data combinados
  3. El papel del Big Data en IA
  4. Tecnologías de IA que se están utilizando con Big Data
UNIDAD DIDÁCTICA 5. SISTEMAS EXPERTOS
  1. Sistemas expertos
  2. Estructura de un sistema experto
  3. Inferencia: Tipos
  4. Fases de construcción de un sistema
  5. Rendimiento y mejoras
  6. Dominios de aplicación
  7. Creación de un sistema experto en C#
  8. Añadir incertidumbre y probabilidades
UNIDAD DIDÁCTICA 6. FUTURO DE LA INTELIGENCIA ARTIFICIAL
  1. Futuro de la inteligencia artificial
  2. Impacto de la IA en la industria
  3. El impacto económico y social global de la IA y su futuro
UNIDAD DIDÁCTICA 7. INTRODUCCIÓN AL MACHINE LEARNING
  1. Introducción
  2. Clasificación de algoritmos de aprendizaje automático
  3. Ejemplos de aprendizaje automático
  4. Diferencias entre el aprendizaje automático y el aprendizaje profundo
  5. Tipos de algoritmos de aprendizaje automático
  6. El futuro del aprendizaje automático
UNIDAD DIDÁCTICA 8. EXTRACCIÓN DE ESTRUCTURA DE LOS DATOS: CLUSTERING
  1. Introducción
  2. Algoritmos
UNIDAD DIDÁCTICA 9. SISTEMAS DE RECOMENDACIÓN
  1. Introducción
  2. Filtrado colaborativo
  3. Clusterización
  4. Sistemas de recomendación híbridos
UNIDAD DIDÁCTICA 10. CLASIFICACIÓN
  1. Clasificadores
  2. Algoritmos
UNIDAD DIDÁCTICA 11. REDES NEURONALES Y DEEP LEARNING
  1. Componentes
  2. Aprendizaje
UNIDAD DIDÁCTICA 12. SISTEMAS DE ELECCIÓN
  1. Introducción
  2. El proceso de paso de DSS a IDSS
  3. Casos de aplicación
UNIDAD DIDÁCTICA 13. DEEP LEARNING CON PYTHON, KERAS Y TENSORFLOW
  1. Aprendizaje profundo
  2. Entorno de Deep Learning con Python
  3. Aprendizaje automático y profundo
UNIDAD DIDÁCTICA 14. SISTEMAS NEURONALES
  1. Redes neuronales
  2. Redes profundas y redes poco profundas
UNIDAD DIDÁCTICA 15. REDES DE UNA SOLA CAPA
  1. Perceptrón de una capa y multicapa
  2. Ejemplo de perceptrón
UNIDAD DIDÁCTICA 16. REDES MULTICAPA
  1. Tipos de redes profundas
  2. Trabajar con TensorFlow y Python
UNIDAD DIDÁCTICA 17. ESTRATEGIAS DE APRENDIZAJE
  1. Entrada y salida de datos
  2. Entrenar una red neuronal
  3. Gráficos computacionales
  4. Implementación de una red profunda
  5. El algoritmo de propagación directa
  6. Redes neuronales profundas multicapa
MÓDULO 2. BUSINESS INTELLIGENCE
UNIDAD DIDÁCTICA 1. MINERÍA DE DATOS O DATA MINING Y EL APRENDIZAJE AUTOMÁTICO
  1. Introducción a la minería de datos y el aprendizaje automático
  2. Proceso KDD
  3. Modelos y Técnicas de Data Mining
  4. Áreas de aplicación
  5. Minería de textos y Web Mining
  6. Data mining y marketing
UNIDAD DIDÁCTICA 2. DATAMART. CONCEPTO DE BASE DE DATOS DEPARTAMENTAL
  1. Aproximación al concepto de DataMart
  2. Bases de datos OLTP
  3. Bases de Datos OLAP
  4. MOLAP, ROLAP & HOLAP
  5. Herramientas para el desarrollo de cubos OLAP
UNIDAD DIDÁCTICA 3. DATAWAREHOUSE O ALMACÉN DE DATOS CORPORATIVOS
  1. Visión General. ¿Por qué DataWarehouse?
  2. Estructura y Construcción
  3. Fases de implantación
  4. Características
  5. Data Warehouse en la nube
UNIDAD DIDÁCTICA 4. INTELIGENCIA DE NEGOCIO Y HERRAMIENTAS DE ANALÍTICA
  1. Tipos de herramientas para BI
  2. Productos comerciales para BI
  3. Productos Open Source para BI
  4. Beneficios de las herramientas de BI
UNIDAD DIDÁCTICA 5. BUSINESS INTELLIGENCE CON POWERBI
  1. Business Intelligence en Excel
  2. Herramienta Powerbi
UNIDAD DIDÁCTICA 6. HERRAMIENTA TABLEAU
  1. Herramienta Tableau
UNIDAD DIDÁCTICA 7. HERRAMIENTA QLIKVIEW
  1. Instalación y arquitectura
  2. Carga de datos
  3. Informes
  4. Transformación y modelo de datos
  5. Análisis de datos
MÓDULO 3. PROCESAMIENTO DE LENGUAJE NATURAL (PLN)
UNIDAD DIDÁCTICA 1. INTRODUCCIÓN AL PLN
  1. ¿Qué es PLN?
  2. ¿Qué incluye el PLN?
  3. Ejemplos de uso de PLN
  4. Futuro del PLN
UNIDAD DIDÁCTICA 2. RECURSOS PARA EL PLN
  1. Introducción a Python
  2. ¿Qué necesitas?
  3. Librerías para el análisis de datos en Python
  4. PLN en Python con la librería NLTK
  5. Otras herramientas para PLN
UNIDAD DIDÁCTICA 3. COMPUTACIÓN DE LA SINTAXIS PARA EL PLN
  1. Principios del análisis sintáctico
  2. Gramática libre de contexto
  3. Analizadores sintácticos (Parsers)
UNIDAD DIDÁCTICA 4. COMPUTACIÓN DE LA SEMÁNTICA PARA EL PLN
  1. Aspectos introductorios del análisis semántico
  2. Lenguaje semántico para PLN
  3. Análisis pragmático
UNIDAD DIDÁCTICA 5. RECUPERACIÓN Y EXTRACCIÓN DE LA INFORMACIÓN
  1. Aspectos introductorios
  2. Pasos en la extracción de información
  3. Ejemplo PLN
  4. Ejemplo PLN con entrada de texto en inglés
MÓDULO 4. CHATBOTS E INTELIGENCIA ARTIFICIAL
UNIDAD DIDÁCTICA 1 .¿QUÉ ES LA INTELIGENCIA ARTIFICIAL?
  1. Introducción a la Inteligencia artificial
  2. El Test de Turing
  3. Agentes Inteligentes
  4. Aplicaciones de la inteligencia artificial
UNIDAD DIDÁCTICA 2. ¿QUÉ ES UN CHATBOT?
  1. Aspectos introductorios
  2. ¿Qué es un chatbot?
  3. ¿Cómo funciona un chatbot?
  4. VoiceBots
  5. Desafios para los Chatbots
UNIDAD DIDÁCTICA 3. RELACIÓN ENTRE IA Y CHATBOTS
  1. Chatbots y el papel de la Inteligencia Artificial (IA)
  2. Usos y beneficios de los chatbots
  3. Diferencia entre bots, chatbots e IA
UNIDAD DIDÁCTICA 4. ÁMBITOS DE APLICACIÓN CHATBOTS
  1. Áreas de aplicación de Chatbots
  2. Desarrollo de un chatbot con ChatterBot y Python
  3. Desarrollo de un chatbot para Facebook Messenger con Chatfuel

Una vez finalizado el proceso de matriculación, el alumno empieza su andadura en INESEM Formación Continua a través de nuestro Campus Virtual.

La metodología INESEM Business School, ha sido diseñada para acercar el aula al alumno dentro de la formación online. De esta forma es tan importante trabajar de forma activa en la plataforma, como necesario el trabajo autónomo de este. El alumno cuenta con una completa acción formativa que incluye además del contenido teórico, objetivos, mapas conceptuales, recuerdas, autoevaluaciones, bibliografía, exámenes, actividades prácticas y recursos en forma de documentos descargables, vídeos, material complementario, normativas, páginas web, etc.

A esta actividad en la plataforma hay que añadir el tiempo asociado a la formación dedicado a horas de estudio. Estos son unos completos libros de acceso ininterrumpido a lo largo de la trayectoria profesional de la persona, no solamente durante la formación. Según nuestra experiencia, gran parte del alumnado prefiere trabajar con ellos de manera alterna con la plataforma, si bien la realización de autoevaluaciones de cada unidad didáctica y evaluación de módulo, solamente se encuentra disponible de forma telemática.

El alumno deberá avanzar a lo largo de las unidades didácticas que constituyen el itinerario formativo, así como realizar las actividades y autoevaluaciones correspondientes. Al final del itinerario encontrará un examen final o exámenes. A fecha fin de la acción formativa el alumno deberá haber visitado al menos el 100 % de los contenidos, haber realizado al menos el 75 % de las actividades de autoevaluación, haber realizado al menos el 75 % de los exámenes propuestos y los tiempos de conexión alcanzados deberán sumar en torno al 75 % de las horas de la teleformación de su acción formativa. Dicho progreso se contabilizará a través de la plataforma virtual y puede ser consultado en cualquier momento.

La titulación será remitida al alumno por correo postal una vez se haya comprobado que ha completado el proceso de aprendizaje satisfactoriamente.

Por último, el alumno contará en todo momento con:

CLAUSTRO DOCENTE

Ofrecerá un minucioso seguimiento al alumno, resolviendo sus dudas e incluso planteando material adicional para su aprendizaje profesional.

COMUNIDAD

En la que todos los alumos de INESEM podrán debatir y compartir su conocimiento.

MATERIAL ADICIONAL

De libre acceso en el que completar el proceso formativo y ampliar los conocimientos de cada área concreta. Podrá encontrarlo en Revista Digital, INESEM y MasterClass INESEM, puntos de encuentro entre profesionales que comparten sus conocimientos.

Opiniones de los alumnos

12

Años de experiencia en la gestión de formación

5789

Alumnos han confiado en INESEM

+200

Profesionales de la educación a tu servicio