Las acciones formativas de Formacioncontinua tienen modalidad online
Modalidad
ONLINE
Duración de las acciones formativas de formacioncontinua
Duración Total
1500 H
Duración de teleformación de las acciones formativas de formacioncontinua
Horas Teleformación
450 H
Precio de las acciones formativas de INESEM
Entidad
INESEM Formación Continua
Presentación

Descripción
La inteligencia artificial está transformando la forma en que las empresas y las organizaciones operan y ofrecen sus productos y servicios.En particular, la inteligencia artificial está revolucionando la forma en que se toman decisiones y se resuelven problemas en multitud de áreas como la medicina, la energía, el transporte, la logística, el comercio, la seguridad, la educación, etc. Gracias a este Máster en Inteligencia Artificial Aplicada podrás obtener habilidades y conocimientos que son muy valorados por las empresas y acceder a una amplia gama de oportunidades de trabajo bien remuneradas y desafiantes. Contarás con un equipo de profesionales especializados en la materia que te ayudará en todo lo que necesites.

Objetivos
  • Estudiar los conceptos básicos de Big Data, Business Intelligence y Data Science.
  • Desarrollar habilidades en Machine Learning y Deep Learning.
  • Aprender a crear Chatbots con Chat GPT.
  • Conocer el uso de la Inteligencia Artificial en Mecatrónica.
  • Entender la relación entre Ciencias del Comportamiento, Big Data e Inteligencia Artificial.
  • Saber cómo utilizar Python y OpenCV para la Visión Artificial.
  • Comprender los conceptos de ética en la Inteligencia Artificial.

Para qué te prepara
Gracias a este Máster en Inteligencia Artificial Aplicada aprenderás a explotar esta tecnología mediante el uso de diferentes técnicas y herramientas en multitud de áreas y sectores. Aprenderás a analizar información con Python y R, verás los principios éticos a seguir para la implantación de la IA, desarrollarás chatbots mediante procesamiento de lenguaje natural, explotarás Chat GPT y verás su uso en Mecatrónica, Arduino y visión artificial.

A quién va dirigido
El Máster en Inteligencia Artificial Aplicada está destinado a graduados con formación en áreas de Ingeniería, Ciencias de la Computación, Informática, Matemáticas, Estadística, Economía y Negocios o profesionales que les interese la inteligencia artificial y quieran saber cómo se aplica en diferentes áreas y con diferentes metodologías.

temario

  1. ¿Qué es Big Data?
  2. La era de las grandes cantidades de información: historia del big data
  3. La importancia de almacenar y extraer información
  4. Big Data enfocado a los negocios
  5. Open data
  6. Información pública
  7. IoT (Internet of Things-Internet de las cosas)
  1. Diagnóstico inicial
  2. Diseño del proyecto
  3. Proceso de implementación
  4. Monitorización y control del proyecto
  5. Responsable y recursos disponibles
  6. Calendarización
  7. Alcance y valoración económica del proyecto
  1. Definiendo el concepto de Business Intelligence y sociedad de la información
  2. Arquitectura de una solución Business Intelligence
  3. Business Intelligence en los departamentos de la empresa
  4. Conceptos de Plan Director, Plan Estratégico y Plan de Operativa Anual
  5. Sistemas Operacionales y Procesos ETL en un sistema de BI
  6. Ventajas y Factores de Riesgos del Business Intelligence
  1. Cuadros de Mando Integrales (CMI)
  2. Sistemas de Soporte a la Decisión (DSS)
  3. Sistemas de Información Ejecutiva (EIS)
  1. Introducción a la minería de datos y el aprendizaje automático
  2. Proceso KDD
  3. Modelos y Técnicas de Data Mining
  4. Áreas de aplicación
  5. Minería de Textos y Web Mining
  6. Data mining y marketing
  1. Aproximación al concepto de DataMart
  2. Bases de datos OLTP
  3. Bases de Datos OLAP
  4. MOLAP, ROLAP & HOLAP
  5. Herramientas para el desarrollo de cubos OLAP
  1. Visión General: ¿Por qué DataWarehouse?
  2. Estructura y Construcción
  3. Fases de implantación
  4. Características
  5. Data Warehouse en la nube
  1. ¿Qué es el Data Storytelling?
  2. Elementos clave del Data Storytelling
  3. ¿Por qué es importante el Data Storytelling?
  4. ¿Cómo hacer Data Storytelling?
  1. ¿Qué es la ciencia de datos?
  2. Herramientas necesarias para el científico de datos
  3. Data Science & Cloud Computing
  4. Aspectos legales en Protección de Datos
  1. ¿Qué es Weka?
  2. Técnicas de Data Mining en Weka
  3. Interfaces de Weka
  4. Selección de atributos
  1. Introducción a Python
  2. ¿Qué necesitas?
  3. Librerías para el análisis de datos en Python
  4. MongoDB, Hadoop y Python. Dream Team del Big Data
  1. Introducción a R
  2. ¿Qué necesitas?
  3. Tipos de datos
  4. Estadística Descriptiva y Predictiva con R
  5. Integración de R en Hadoop
  1. Obtención y limpieza de los datos (ETL)
  2. Inferencia estadística
  3. Modelos de regresión
  4. Pruebas de hipótesis
  1. Inteligencia Analítica de negocios
  2. La teoría de grafos y el análisis de redes sociales
  3. Presentación de resultados
  1. Introducción a la inteligencia artificial
  2. Historia
  3. La importancia de la IA
  1. Algoritmos aplicados a la inteligencia artificial
  1. Relación entre inteligencia artificial y big data
  2. IA y Big Data combinados
  3. El papel del Big Data en IA
  4. Tecnologías de IA que se están utilizando con Big Data
  1. Sistemas expertos
  2. Estructura de un sistema experto
  3. Inferencia: Tipos
  4. Fases de construcción de un sistema
  5. Rendimiento y mejoras
  6. Dominios de aplicación
  7. Creación de un sistema experto en C#
  8. Añadir incertidumbre y probabilidades
  1. Futuro de la inteligencia artificial
  2. Impacto de la IA en la industria
  3. El impacto económico y social global de la IA y su futuro
  1. Introducción
  2. Clasificación de algoritmos de aprendizaje automático
  3. Ejemplos de aprendizaje automático
  4. Diferencias entre el aprendizaje automático y el aprendizaje profundo
  5. Tipos de algoritmos de aprendizaje automático
  6. El futuro del aprendizaje automático
  1. Introducción
  2. Filtrado colaborativo
  3. Clusterización
  4. Sistemas de recomendación híbridos
  1. Clasificadores
  2. Algoritmos
  1. Introducción
  2. El proceso de paso de DSS a IDSS
  3. Casos de aplicación
  1. Aprendizaje profundo
  2. Entorno de Deep Learning con Python
  3. Aprendizaje automático y profundo
  1. Redes neuronales
  2. Redes profundas y redes poco profundas
  1. Perceptrón de una capa y multicapa
  2. Ejemplo de perceptrón
  1. Tipos de redes profundas
  2. Trabajar con TensorFlow y Python
  1. Entrada y salida de datos
  2. Entrenar una red neuronal
  3. Gráficos computacionales
  4. Implementación de una red profunda
  5. El algoritmo de propagación directa
  6. Redes neuronales profundas multicapa
  1. Cómo usar loc en Pandas
  2. Cómo eliminar una columna en Pandas
  1. Pivot tables en pandas
  1. Python Pandas fusionando marcos de datos
  1. Algortimo de Naive bayes
  2. Tipos de Naive Bayes
  1. Máquinas de vectores soporte (Support Vector Machine-SVM)
  2. ¿Cómo funciona SVM?
  3. Núcleos SVM
  4. Construcción de clasificador en Scikit-learn
  1. K-nearest Neighbors (KNN)
  2. Implementación de Python del algoritmo KNN
  1. Algorimto de Random Forest
  1. Ética normativa y ética aplicada
  2. Historia y caracteres de la ética de la inteligencia artificial
  3. Ética realista y ética ficción
  4. Inteligencia artificial como objeto y sujeto
  5. Singularidad tecnológica y futuro de la especie humana
  6. Machine ethics. Nuevos entes autónomos y estatus moral
  7. Controversias éticas de la aplicación de la inteligencia artificial
  8. Bioética e inteligencia artificial
  9. Democracia e inteligencia artificial
  1. Gobernanza como sistema de prevención y control de riesgos en la inteligencia artificial
  2. Papel de la UE en la gobernanza de la inteligencia artificial
  3. Evaluaciones de impacto social, ético y legal de inteligencia artificial de alto riesgo
  4. Elaboración de un plan de gobernanza
  1. Principios de la inteligencia artificial responsable
  2. Aspectos de diseño éticos para Machine Learning
  3. Inteligencia artificial explicable (XAI). Hacia la IA responsable
  4. Imparcialidad de Datos (Fairness). Control del sesgo en los modelos
  5. Escenarios con modelos de IA de alto riesgo
  6. Auditabilidad en los sistemas de inteligencia artificial
  7. Sandbox normativo piloto del futuro reglamentario de IA en España
  8. Transparencia en modelos de Machine Learning
  9. Análisis de herramientas software para medir la imparcialidad
  1. Metodología de la ética en la inteligencia artificial
  2. Agentes artificiales morales
  3. Moralidad artificial desde un enfoque funcionalista
  4. Objeciones acerca de agencias morales artificiales
  5. Responsabilidad y Derechos de los robots
  1. Introducción a la filosofía política de la inteligencia artificial
  2. Empleo e inteligencia artificial
  3. Relaciones humanas e inteligencia artificial
  4. Funciones de los Estados e inteligencia artificial
  5. Educación e inteligencia artificial
  6. Salud e inteligencia artificial
  7. Movilidad e inteligencia artificial
  8. Articulación entre ética y política sobre la inteligencia artificial
  9. Globalización e inteligencia artificial
  1. Digitalización al servicio de los Objetivos de Desarrollo Sostenible (ODS)
  2. Estrategia Europea de transición hacia una economía sostenible
  3. Cambio climático global
  4. Mejora de eficiencia en procesos organizativos con IA.
  5. Mejora de eficiencia en prácticas individuales con IA.
  6. Ética ambiental e inteligencia artificial
  1. Armas autónomas
  2. Intervenciones militares teledirigidas
  3. Ética de la guerra
  1. El metaverso
  2. Gemelos digitales humanos
  3. Creación de universos paralelos en 3D
  1. Sistemas autónomos en el ámbito laboral
  2. Inteligencia artificial para la mejora de calidad de vida en ciudades. Mejora del impacto medioambiental
  3. Combinación de smart cities, internet de las cosas y big data
  4. Inteligencia artificial y cuidado personal y sexual
  5. Análisis ético de la incorporación de la robótica en la vida humana
  1. Inteligencia artificial para restaurar funciones físicas y cognitivas deterioradas
  2. Optimizar las capacidades humanas con inteligencia artificial
  3. Debate académico sobre transhumanismo y poshumanismo
  1. ¿Qué es PLN?
  2. ¿Qué incluye el PLN?
  3. Ejemplos de uso de PLN
  4. Futuro del PLN
  1. PLN en Python con la librería NLTK
  2. Otras herramientas para PLN
  1. Principios del análisis sintáctico
  2. Gramática libre de contexto
  3. Analizadores sintácticos (Parsers)
  1. Aspectos introductorios del análisis semántico
  2. Lenguaje semántico para PLN
  3. Análisis pragmático
  1. Aspectos introductorios
  2. Pasos en la extracción de información
  3. Ejemplo PLN
  4. Ejemplo PLN con entrada de texto en inglés
  1. Aspectos introductorios
  2. ¿Qué es un chatbot?
  3. ¿Cómo funciona un chatbot?
  4. VoiceBots
  5. Desafios para los Chatbots
  1. Chatbots y el papel de la Inteligencia Artificial (IA)
  2. Usos y beneficios de los chatbots
  3. Diferencia entre bots, chatbots e IA
  1. Áreas de aplicación de Chatbots
  2. Desarrollo de un chatbot con ChatterBot y Python
  3. Desarrollo de un chatbot para Facebook Messenger con Chatfuel
  1. ¿Qué es ChatGPT?
  2. Cómo afecta la inteligencia artificial en ChatGPT?
  3. Versiones de ChatGPT y funcionalidades
  4. Usos de ChatGPT
  5. Beneficios de la IA y ChatGPT
  1. ¿Cómo funciona ChatGPT?
  2. Diferencias entre ChatGPT y otros chatbots
  3. Procesamiento del Lenguaje Natural (PLN)
  4. Aprendizaje por transferencia
  5. Cómo entrenar un modelo de ChatGPT
  1. Elección de la plataforma de desarrollo
  2. Configuración del entorno de desarrollo
  3. Preparación de los datos de entrenamiento
  4. Entrenamiento del modelo de ChatGPT
  5. Integración del modelo en el chatbot
  6. Pruebas y mejora del modelo
  1. Análisis de la conversación con el usuario
  2. Personalización de la conversación
  3. Uso de emojis y respuestas con imágenes
  4. Integración de voz y audio
  5. Respuestas multilingües
  1. Integración del chatbot en una página web
  2. Integración del chatbot en una aplicación móvil
  3. Personalización del aspecto del chatbot
  4. Gestión de la seguridad y privacidad del usuario
  1. Modelos de negocio para chatbots
  2. Monetización a través de publicidad
  3. Monetización a través de suscripciones
  4. Monetización a través de compras in-app
  5. Análisis del rendimiento y la rentabilidad
  1. Aspectos éticos y responsabilidad en la IA
  2. Sesgos en la IA y cómo evitarlos
  3. Derechos y privacidad del usuario
  4. Regulaciones y normativas sobre chatbots
  5. Responsabilidad social y ambiental
  1. Chatbots para atención al cliente
  2. Chatbots para servicios financieros
  3. Chatbots para servicios de salud
  4. Chatbots para educación
  5. Chatbots para entretenimiento y ocio
  1. Plataformas de desarrollo de Chatbots
  2. Librerías y frameworks para el desarrollo de IA
  3. Bases de datos y almacenamiento
  4. Recursos de formación y aprendizaje
  5. Comunidades y grupos de apoyo para desarrolladores
  1. Desarrollo de un Chatbot avanzado
  2. Caso de estudio en atención al cliente
  3. Caso de estudio en educación
  4. Caso de estudio en salud
  5. Caso de estudio en ocio
  1. ¿Qué es la inteligencia artificial?
  2. Hardware y software unidos por la Inteligencia Artificial
  3. Inteligencia Artificial y Visión Artificial
  4. Arduino: introducción
  1. Instalación de Arduino
  2. Configurando tu Arduino para Python
  1. Salidas analógicas
  2. Valores analógicos en Arduino
  1. Introducción al machine learning
  2. Aprendizaje supervisado
  3. Aprendizaje no supervisado
  1. Funciones y parámetros
  2. Variables y constantes especializadas
  3. Estructura de control
  1. Introducción
  2. ¿Qué son los datos de entrenamiento de IA?
  3. ¿Por qué se requieren datos de entrenamiento de IA?
  4. ¿Cuántos datos son adecuados?
  5. ¿Qué afecta la calidad de los datos en el entrenamiento?
  1. Crear red neural paso a paso
  2. Redes neuronales: Aprendizaje
  3. Otras redes neuronales
  1. Inteligencia Artificial: introducción
  2. Inteligencia de los seres vivos
  3. Inteligencia Artificial
  4. Dominios de aplicación
  5. El campo de la mecatrónica
  6. Las posibilidades de la Inteligencia Artificial
  7. Mecatrónica e Inteligencia Artificial
  1. ¿Qué es un sistema experto en polígonos?
  2. Estructura de un sistema experto
  3. Inferencia: tipos
  4. Construcción de sistemas expertos
  1. Introducción a la lógica difusa
  2. Conjuntos difusos y grados de pertenencia
  3. Operadores sobre los conjuntos difusos
  4. Creación de reglas
  5. Fuzzificación y defuzzificación
  1. Introducción a la búsqueda de rutas
  2. Rutas y grafos
  3. Algoritmos exhaustivos de búsqueda de rutas e "inteligentes"
  4. Implementación
  1. ¿Qué son los algoritmos genéticos?
  2. Evolución biológica y artificial
  3. Elección de la representación
  4. Evaluación, selección y supervivencia
  5. Reproducción: crossover y mutación
  6. Dominios de aplicación
  1. Introducción a las redes neuronales
  2. Origen biológico
  3. La neurona formal
  4. Perceptrón
  5. Redes feed-forward
  6. Aprendizaje
  7. Otras redes
  1. La visión artificial: definiciones y aspectos principales
  1. Ópticas
  2. Iluminación
  3. Cámaras
  4. Sistemas 3D
  5. Sensores
  6. Equipos compactos
  7. Metodologías para la selección del hardware
  1. Algoritmos
  2. Software
  3. Segmentación e interpretación de imágenes
  4. Metodologías para la selección del software
  1. Aplicaciones clásicas: discriminación, detección de fallos…
  2. Nuevas aplicaciones: códigos OCR, trazabilidad, robótica, reconocimiento (OKAO)
  1. Descripción general OpenCV
  2. Instalación OpenCV para Python en Windows
  3. Instalación OpenCV para Python en Linux
  4. Anaconda y OpenCV
  1. Manejo de archivos
  2. Leer una imagen con OpenCV
  3. Mostrar imagen con OpenCV
  4. Guardar una imagen con OpenCV
  5. Operaciones aritméticas en imágenes usando OpenCV
  6. Funciones de dibujo
  1. Redimensión de imágenes
  2. Erosión de imágenes
  3. Desenfoque de imágenes
  4. Bordeado de imágenes
  5. Escala de grises en imágenes
  6. Escalado, rotación, desplazamiento y detección de bordes
  7. Erosión y dilatación de imágenes
  8. Umbrales simples
  9. Umbrales adaptativos
  10. Umbral de Otsu
  11. Contornos de imágenes
  12. Incrustación de imágenes
  13. Intensidad en imágenes
  14. Registro de imágenes
  15. Extracción de primer plano
  16. Operaciones morfológicas en imágenes
  17. Pirámide de imagen
  1. Analizar imágenes usando histogramas
  2. Ecualización de histogramas
  3. Template matching
  4. Detección de campos en documentos usando Template matching
  1. Espacios de color en OpenCV
  2. Cambio de espacio de color
  3. Filtrado de color
  4. Denoising de imágenes en color
  5. Visualizar una imagen en diferentes espacios de color
  1. Detección de líneas
  2. Detección de círculos
  3. Detectar esquinas (Método Shi-Tomasi)
  4. Detectar esquinas (método Harris)
  5. Encontrar círculos y elipses
  6. Detección de caras y sonrisas
  1. Vecino más cercano (K-Nearest Neighbour)
  2. Agrupamiento de K-medias (K-Means Clustering)

metodología

claustro

Claustro Docente

Ofrecerá un minucioso seguimiento al alumno, resolviendo sus dudas.

campus virtual

Formación Online

Toda nuestra oferta formativa es de modalidad online, incluidos los exámenes.

materiales didácticos

Comunidad

En la que todos los alumos de INESEM podrán debatir y compartir su conocimiento.

material adicional

Materiales Didácticos

En la mayoría de nuestras acciones formativas, el alumno contará con el apoyo de los materiales físicos.

Centro de atención al estudiante (CAE)

Material Adicional

El alumno podrá completar el proceso formativo y ampliar los conocimientos de cada área concreta.

inesem emplea

Campus Virtual

Entorno Persona de Aprendizaje disponible las 24 horas, los 7 días de la semana.

Una vez finalizado el proceso de matriculación, el alumno empieza su andadura en INESEM Formación Continua a través de nuestro Campus Virtual.

La metodología INESEM Business School, ha sido diseñada para acercar el aula al alumno dentro de la formación online. De esta forma es tan importante trabajar de forma activa en la plataforma, como necesario el trabajo autónomo de este. El alumno cuenta con una completa acción formativa que incluye además del contenido teórico, objetivos, mapas conceptuales, recuerdas, autoevaluaciones, bibliografía, exámenes, actividades prácticas y recursos en forma de documentos descargables, vídeos, material complementario, normativas, páginas web, etc.

A esta actividad en la plataforma hay que añadir el tiempo asociado a la formación dedicado a horas de estudio. Estos son unos completos libros de acceso ininterrumpido a lo largo de la trayectoria profesional de la persona, no solamente durante la formación. Según nuestra experiencia, gran parte del alumnado prefiere trabajar con ellos de manera alterna con la plataforma, si bien la realización de autoevaluaciones de cada unidad didáctica y evaluación de módulo, solamente se encuentra disponible de forma telemática.

El alumno deberá avanzar a lo largo de las unidades didácticas que constituyen el itinerario formativo, así como realizar las actividades y autoevaluaciones correspondientes. Al final del itinerario encontrará un examen final o exámenes. A fecha fin de la acción formativa el alumno deberá haber visitado al menos el 100 % de los contenidos, haber realizado al menos el 75 % de las actividades de autoevaluación, haber realizado al menos el 75 % de los exámenes propuestos y los tiempos de conexión alcanzados deberán sumar en torno al 75 % de las horas de la teleformación de su acción formativa. Dicho progreso se contabilizará a través de la plataforma virtual y puede ser consultado en cualquier momento.

La titulación será remitida al alumno por correo postal una vez se haya comprobado que ha completado el proceso de aprendizaje satisfactoriamente.

Requisitos de acceso

Esta formación pertenece al programa de Formación Continua de INESEM. Esta formación se tramita con cargo a un crédito que tienen asignado las empresas privadas españolas para la formación de sus empleados sin que les suponga un coste.

Para tramitar dicha formación es preciso cumplir los siguientes requisitos:

  • Estar trabajando para una empresa privada
  • Encontrarse cotizando en Régimen General de la Seguridad Social
  • Solicitar un curso que esté relacionado con el puesto de trabajo o con la actividad empresarial
  • Que la empresa autorice la formación
  • Que la empresa disponga de suficiente crédito formativo para cubrir el coste del curso

titulación

Titulación de Formación Continua Bonificada expedida por el Instituto Europeo de Estudios Empresariales (INESEM). Titulación Expedida y Avalada por el Instituto Europeo de Estudios Empresariales. "Enseñanza No Oficial y No Conducente a la Obtención de un Título con Carácter Oficial o Certificado de Profesionalidad."

Opiniones de los alumnos

TAMBIÉN PODRÍA INTERESARTE...
Cursos bonificados relacionados
Técnico de Programación de Páginas Web con PHP (Servidor) (Online)
Hasta 100% bonificable
Curso Práctico de Virtuemart: Cómo crear una Tienda Virtual (Online)
Hasta 100% bonificable
Auditoría de Seguridad Informática (Online)
Hasta 100% bonificable
¿Qué es Formación Continua?
POR QUÉ ESTUDIAR EN INESEM
Claustro especializado
Profesores especializados realizarán un seguimiento personalizado al alumno.
campus virtual
Acceso a la plataforma de aprendizaje disponible las 24 horas e ilimitado.
Gestión gratuita
Gestionamos todos los trámites administrativos para la bonificación de la formación.
materiales didácticos
Enviamos gratis los materiales de apoyo en la mayoría de nuestras acciones formativas (envíos a España).
planes formativos a medida
Diseñamos planes de formación adaptados a las necesidades de las empresas.
materiales adicionales
Los alumnos podrán profundizar más con material adicional que su docente le puede aportar.
amplio catálogo formativo
Contamos con más de 5000 cursos y masters bonificables para trabajadores.
Centro de atención al estudiante
Nuestros asesores académicos atenderán al alumnado antes, durante y después de la formación.
consultoría de recursos humanos
Ofrecemos soluciones para el área laboral de tu empresa.
secretaría virtual
Todas las gestiones las podrás hacer vía online, no será necesario hacerlo presencial.
INESEM en cifras
+150.000

alumnos

99%

de empleabilidad

+2.000

acuerdos con empresas

98%

de satisfacción

Universidades colaboradoras