Las acciones formativas de Formacioncontinua tienen modalidad online
Modalidad
ONLINE
Duración de las acciones formativas de formacioncontinua
Duración Total
1500 H
Duración de teleformación de las acciones formativas de formacioncontinua
Horas Teleformación
450 H
Precio de las acciones formativas de INESEM
Créditos de las acciones formativas de formacioncontinua
Créditos
60 ECTS
Entidad
INESEM Formación Continua
Presentación

Descripción
La Ciencia de Datos es un campo en constante evolución que se centra en el análisis, la interpretación y la extracción de conocimiento de grandes conjuntos de datos. En la actualidad, debido a la creciente cantidad de datos, está cada vez más presente la necesidad del desarrollo de profesionales en las Ciencias de Datos. La capacidad de aprovechar esta enorme fuente de información y emplearla en el aprendizaje automático es una herramienta increíblemente potente.Este Máster en Ciencia de Datos y Aprendizaje Automático proporciona una formación sólida y completa con un enfoque práctico y teórico. El Master brinda a los estudiantes las habilidades necesarias para abordar los desafíos del análisis de datos y el aprendizaje automático en diversos contextos.

Objetivos
  • Repasar la programación estructurada.
  • Ver la elaboración y diseño de interfaces de usuario.
  • Estudiar el acceso a bases de datos, así como su uso, aprovechamiento y gestión.
  • Entender los puntos principales del Data Mining.
  • Ahondar en el desempeño de la Inteligencia Artificial.
  • Tipificar los valores del Machine Learning y aprendizaje Profundo.

Para qué te prepara
Este Máster en Ciencia de Datos y Aprendizaje Automático prepara a los estudiantes para aplicar técnicas y métodos avanzados en la ciencia de datos y el aprendizaje automático. A través de la programación estructurada, el diseño de interfaces y el acceso a bases de datos, los estudiantes adquieren habilidades prácticas para desarrollar aplicaciones y sistemas robustos. Además, aprenden técnicas para garantizar la calidad de sus proyectos.

A quién va dirigido
El Máster en Ciencia de Datos y Aprendizaje Automático está dirigido tanto a profesionales con conocimientos previos, técnicos de informática, como a aquellos que deseen actualizar sus habilidades en estas áreas en respuesta a la creciente demanda de profesionales en el campo de la ciencia de datos. Teniendo en cuenta a estudiantes de esta rama que quieran profundizar.

temario

  1. Conceptos básicos. Definición de algoritmo.
  2. Metodología para la solución de problemas
  3. Entidades primitivas para el diseño de instrucciones
  4. Programación estructurada. Métodos para la elaboración de algoritmos
  5. Técnicas para la formulación de algoritmos
  6. Estructuras algorítmicas básicas
  7. Arrays. Operaciones
  8. Cadenas de caracteres. Definición, función, manipulación.
  9. Módulos
  10. Confección de algoritmos básicos.
  1. Análisis de algoritmos.
  2. Manejo de memoria
  3. Estructuras lineales estáticas y dinámicas:
  4. Recursividad.
  5. Estructuras no lineales estáticas y dinámicas
  6. Algoritmos de ordenación.
  7. Métodos de búsqueda.
  8. Tipos abstractos de datos.
  1. El entorno de desarrollo de programación.
  2. Lenguaje estructurado
  3. Herramientas de depuración.
  4. La reutilización del software.
  5. Herramientas de control de versiones.
  1. Evolución de las interfaces en el software de gestión.
  2. Características de las Interfaces, interacción hombre-máquina.
  3. Interface gráficas de usuario
  4. Normalización y estándares
  5. User Access), CDE (Common Desktop Environment), etc.
  6. Guías de estilos.
  7. Normas CUA (Common User Access)
  8. Arquitectura y herramientas para el desarrollo de GUI:
  9. Diseño y desarrollo de interfaces de gestión:
  10. Evaluación del diseño
  1. Interfaces gráficas de usuario
  2. Herramientas para el desarrollo de interfaces gráficas de usuario
  3. Técnicas de usabilidad.
  4. Rendimiento de interfaces.
  5. Notación Húngara.
  6. Estructura de un programa GUI
  7. El procedimiento de ventana
  8. Menús.
  9. Fichero de recursos.
  10. Los cajas de diálogo
  11. Controles básicos.
  12. El Interfaz de dispositivos gráficos (GDI)
  1. El cliente del SGBD. Usuarios y privilegios.
  2. El lenguaje SQL.
  3. Objetos de la base de datos.
  4. Integridad y seguridad de los datos
  5. Sentencias del lenguaje estructurado para operar sobre las bases de datos.
  6. APIs de acceso a bases de datos.
  7. Integración de los objetos de la base de datos en el lenguaje de programación estructurado.
  8. Conexiones para el acceso a datos
  9. Realización de consultas SQL desde un programa estructurado
  10. Creación y eliminación de bases de datos.
  11. Creación y eliminación de tablas.
  12. Manipulación de datos contenidos en una base de datos:
  13. Objetos de Acceso a Datos (DAO)
  14. Herramientas de acceso a datos proporcionadas por el entorno de programación.
  1. Fundamentos y objetivos de las pruebas.
  2. Tipos de errores y coste de corrección.
  3. Planificación de las pruebas
  4. Proceso de pruebas. Las pruebas en las distintas fases.
  5. Tipos de pruebas
  6. Herramientas.
  7. Normas de calidad del software
  8. Documentación de pruebas
  1. Funciones y características.
  2. Empaquetamiento, instalación y despliegue
  1. Herramientas de documentación: características.
  2. Herramientas para generación de ayudas.
  3. Documentación de una aplicación, características, tipos
  1. Concepto de base de datos relacional.
  2. Ejemplificación.
  3. Concepto de modelos de datos. Funciones y sublenguajes (DDL y DML).
  4. Clasificación los diferentes tipos de modelos de datos de acuerdo al nivel abstracción
  5. Enumeración de las reglas de Codd para un sistema relacional.
  1. Concepto de Relaciones y sus propiedades.
  2. Concepto de Claves en el modelo relacional.
  3. Nociones de álgebra relacional.
  4. Nociones de Cálculo relacional de tuplas para poder resolver ejercicios prácticos básicos.
  5. Nociones de Calculo relacional de dominios.
  6. Teoría de la normalización y sus objetivos
  1. Proceso de realización de diagramas de entidad-relación y saberlo aplicar.
  2. Elementos
  3. Diagrama entidad relación entendidos como elementos para resolver las carencias de los diagramas Entidad-Relación simples.
  4. Elementos
  5. Desarrollo de diversos supuestos prácticos de modelización mediante diagramas de entidad relación.
  1. Contextualización del modelo orientado a objeto dentro del modelado UML.
  2. Comparación del modelo de clases con el modelo-entidad relación.
  3. Diagrama de objetos como caso especial del diagrama de clases.
  1. Enumeración de las ventajas e inconvenientes respecto a otros modelos.
  2. Concepto de fragmentación y sus diferentes tipos
  3. Enumeración de las reglas de corrección de la fragmentación.
  4. Enumeración de las reglas de distribución de datos.
  5. Descripción de los esquemas de asignación y replicación de datos.
  1. Relación de estos elementos con tablas, vistas e índices.
  2. Consecuencias practicas de seleccionar los diferentes objetos de almacenamientos.
  3. Diferentes métodos de fragmentación de la información en especial para bases de datos distribuidas.
  1. Conceptos básicos, nociones y estándares.
  2. Lenguaje de definición de datos (DDL SQL) y aplicación en SGBD actuales.
  3. Discriminación de los elementos existentes en el estándar SQL-92 de otros elementos existentes en bases de datos comerciales.
  4. Sentencias de creación: CREATE
  5. Nociones sobre el almacenamiento de objetos en las bases de datos relacionales.
  6. Nociones sobre almacenamiento y recuperación de XML en las bases de datos relacionales
  1. Conceptos fundamentales.
  2. Identificación de los problemas de la concurrencia.
  3. Actualizaciones perdidas.
  4. Lecturas no repetibles.
  5. Lecturas ficticias.
  6. Nociones sobre Control de la concurrencia
  7. Conocimiento de las propiedades fundamentales de las transacciones.
  8. ACID
  9. Análisis de los niveles de aislamiento
  10. Serializable.
    1. - Desarrollo de un supuesto práctico en el que se ponga de manifiesto la relación y las implicaciones entre el modelo lógico de acceso y definición de datos y el modelo físico de almacenamiento de los datos.
  1. Descripción de los diferentes fallos posibles (tanto físicos como lógicos) que se pueden plantear alrededor de una base de datos.
  2. Enumeración y descripción de los elementos de recuperación ante fallos lógicos que aportan los principales SGBD estudiados.
  3. Distinción de los diferentes tipos de soporte utilizados para la salvaguarda de datos y sus ventajas e inconvenientes en un entorno de backup.
  4. Concepto de RAID y niveles más comúnmente utilizados en las empresas
  5. Servidores remotos de salvaguarda de datos.
  6. Diseño y justificación de un plan de salvaguarda y un protocolo de recuperación de datos para un supuesto de entorno empresarial.
  7. Tipos de salvaguardas de datos
  8. Definición del concepto de RTO (Recovery Time Objective) y RPO (Recovery Point Objective).
  9. Empleo de los mecanismos de verificación de la integridad de las copias de seguridad.
  1. Definición de SGBD distribuido. Principales ventajas y desventajas.
  2. Características esperadas en un SGBD distribuido.
  3. Clasificación de los SGBD distribuidos según los criterios
  4. Enumeración y explicación de las reglas de DATE para SGBD distribuidos.
  5. Replicación de la información en bases de datos distribuidas.
  6. Procesamiento de consultas.
  7. Descomposición de consultas y localización de datos.
  1. Conceptos de seguridad de los datos: confidencialidad, integridad y disponibilidad.
  2. Normativa legal vigente sobre datos
  3. Seguimiento de la actividad de los usuarios
  4. Introducción básica a la criptografía
  5. Desarrollo de uno o varios supuestos prácticos en los que se apliquen los elementos de seguridad vistos con anterioridad.
  1. Descripción de las herramientas para importar y exportar datos
  2. Clasificación de las herramientas
  3. Muestra de un ejemplo de ejecución de una exportación e importación de datos.
  4. Migración de datos entre diferentes SGBD
  1. Ventajas e inconvenientes de las baes de datos
  2. Conceptos generales
  3. El modelo entidad-relación
  4. El modelo entidad-relación extendido
  5. Restricciones de integridad
  1. Estructura del modelo relacional
  2. Claves en el modelo relacional
  3. Restricciones de integridad
  4. Teoría de la normalización
  5. Diseño de una base de datos relacional
  6. Tipos de lenguajes relacionales
  1. Características de SQL
  2. Sistemas de Gestión de Bases de Datos con soporte SQL
  3. Sintaxis en SQL
  4. Especificación de restricciones de integridad
  1. Caracterísiticas de MySQL
  2. Tipos de datos
  3. Sisntaxis SQL para MySQL
  1. Posibles fallos en una base de datos
  2. Elementos de recuperación
  3. Tipos de soporte
  4. RAID
  5. Servidores remotos de salvaguarda de datos
  6. Diseño de un plan de salvaguarda y protocolo de recuperación de datos
  7. Tipos de salvaguardas de datos
  8. RTO (Recovery Time Objective) y RPO (Recovery Point Objective)
  9. Mecanismos de verificación de la integridad de las copias de seguridad
  1. Definición de SGBD distribuido. Principales ventajas y desventajas
  2. Características esperadas en un SGBD distribuido
  3. Clasificación de los SGBD distribuidos
  4. Enumeración y explicación de las reglas de DATE para SGBD distribuidos
  5. Replicación de la información en bases de datos distribuidas
  6. Procesamiento de consultas
  7. Descomposición de consultas y localización de datos
  1. Conceptos de seguridad de los datos: confidencialidad, integridad y disponibilidad
  2. Normativa legal vigente sobre datos
  3. Supuestos prácticos
  1. Herramientas para importar y exportar datos
  2. Clasificación de las herramientas
  3. Ejemplo de ejecución de una exportación e importación de datos
  4. Migración de datos entre diferentes SGBD
  5. Inconvenientes al traspasar datos entre distintos SGBD
  1. Introducción a la minería de datos y el aprendizaje automático
  2. Proceso KDD
  3. Modelos y Técnicas de Data Mining
  4. Áreas de aplicación
  5. Minería de textos y Web Mining
  6. Data mining y marketing
  1. Introducción a R
  2. ¿Qué necesitas?
  3. Tipos de datos
  4. Estadística Descriptiva y Predictiva con R
  5. Integración de R en Hadoop
  1. Obtención y limpieza de los datos (ETL)
  2. Inferencia estadística
  3. Modelos de regresión
  4. Pruebas de hipótesis
  1. Inteligencia Analítica de negocios
  2. La teoría de grafos y el análisis de redes sociales
  3. Presentación de resultados
  1. ¿Qué es Hadoop?
  2. El sistema de archivos HDFS
  3. Algunos comandos de referencia
  4. Procesamiento MapReduce con Hadoop
  5. El concepto de los clusters en Hadoop
  1. ¿Qué es Weka?
  2. Técnicas de Data Mining en Weka
  3. Interfaces de Weka
  4. Selección de atributos
  1. Fundamentos de inteligencia artificial
    1. - Evolución de la inteligencia artificial
    2. - Principales Enfoques de la inteligencia artificial
    3. - Implementación de la inteligencia artificial
    4. - Retos y perspectivas de futuro de la inteligencia artificial
  1. Machine Learning: Principios y Aplicaciones
    1. - Historia del Machine Learning
    2. - Algoritmos de Machine Learning
    3. - Modelos de aprendizaje en Machine Learning
  1. Deep Learning: arquitecturas y entrenamiento
    1. - Arquitectura de redes neuronales profundas
  1. Inteligencia Artificial Generativa (GenAI)
    1. - Tipos de inteligencia artificial generativa
    2. - Usos de la inteligencia artificial generativa
  1. Procesamiento del Lenguaje Natural (NLP)
    1. - Historia de los sistemas NLP
    2. - Definición y alcance del NLP
    3. - Inteligencias artificiales dedicadas al NLP
    4. - Principales problemas y desafíos en el campo del NLP
  1. Chatbots y su integración en empresas
    1. - Historia de los chatbots
    2. - Definición y tipos de chatbot
    3. - Funcionamiento de un chatbot
  1. Transformers: arquitectura y aplicaciones
    1. - Funcionamiento
    2. - Principales arquitecturas de transformers
    3. - Aplicaciones de los transformers
    4. - Ventajas de los transformers
    5. - Problemas y desafíos de los transformers
  1. Visión Artificial
    1. - Definición de visión artificial
    2. - Historia de la visión artificial
    3. - Proceso de visión artificial
    4. - Algoritmos de visión artificial
    5. - Arquitecturas de visión artificial
    6. - Uso de sistemas de visión artificial
    7. - Problemas y desafíos de la visión artificial
  1. Ética y responsabilidad en Inteligencia Artificial
    1. - Consideraciones éticas en el uso de la inteligencia artificial generativa y consejos para mantenerlas
    2. - Consideraciones éticas del procesamiento del lenguaje natural
    3. - Consideraciones éticas de los chatbots
    4. - Consideraciones éticas de la visión artificial
  1. Concepto de aprendizaje profundo
    1. - Diferencias existentes entre el aprendizaje profundo y el aprendizaje automático
  2. Evolución e historia del aprendizaje profundo
    1. - Cronología histórica
    2. - Pioneros del campo del aprendizaje profundo
  3. Ventajas del aprendizaje profundo
    1. - Principales ventajas del aprendizaje profundo
  1. Redes neuronales
  2. Redes profundas y redes poco profundas
  1. Aprendizaje profundo
  2. Entorno de Deep Learning con Python
  3. Aprendizaje automático y profundo
  1. Entrada y salida de datos
  2. Entrenar una red neuronal
  3. Gráficos computacionales
  4. Implementación de una red profunda
  5. El algoritmo de propagación directa
  6. Redes neuronales profundas multicapa
  1. Concepto de aprendizaje profundo por refuerzo
  2. Los elementos que componen un modelo de aprendizaje profundo por refuerzo
  3. El funcionamiento del aprendizaje profundo por refuerzo
    1. - Recompensas vs penalizaciones
    2. - Algoritmos a utilizar
    3. - La ecuación de Bellman
  4. Posibilidades del aprendizaje profundo por refuerzo
  1. Las posibilidades futuras del aprendizaje profundo
  2. Principales usos en la actualidad
  3. Aprendizaje profundo e IoT
    1. - El concepto de IoT
  4. Aplicaciones en el entorno empresarial

metodología

claustro

Claustro Docente

Ofrecerá un minucioso seguimiento al alumno, resolviendo sus dudas.

campus virtual

Formación Online

Toda nuestra oferta formativa es de modalidad online, incluidos los exámenes.

materiales didácticos

Comunidad

En la que todos los alumos de INESEM podrán debatir y compartir su conocimiento.

material adicional

Materiales Didácticos

En la mayoría de nuestras acciones formativas, el alumno contará con el apoyo de los materiales físicos.

Centro de atención al estudiante (CAE)

Material Adicional

El alumno podrá completar el proceso formativo y ampliar los conocimientos de cada área concreta.

inesem emplea

Campus Virtual

Entorno Persona de Aprendizaje disponible las 24 horas, los 7 días de la semana.

Una vez finalizado el proceso de matriculación, el alumno empieza su andadura en INESEM Formación Continua a través de nuestro Campus Virtual.

La metodología INESEM Business School, ha sido diseñada para acercar el aula al alumno dentro de la formación online. De esta forma es tan importante trabajar de forma activa en la plataforma, como necesario el trabajo autónomo de este. El alumno cuenta con una completa acción formativa que incluye además del contenido teórico, objetivos, mapas conceptuales, recuerdas, autoevaluaciones, bibliografía, exámenes, actividades prácticas y recursos en forma de documentos descargables, vídeos, material complementario, normativas, páginas web, etc.

A esta actividad en la plataforma hay que añadir el tiempo asociado a la formación dedicado a horas de estudio. Estos son unos completos libros de acceso ininterrumpido a lo largo de la trayectoria profesional de la persona, no solamente durante la formación. Según nuestra experiencia, gran parte del alumnado prefiere trabajar con ellos de manera alterna con la plataforma, si bien la realización de autoevaluaciones de cada unidad didáctica y evaluación de módulo, solamente se encuentra disponible de forma telemática.

El alumno deberá avanzar a lo largo de las unidades didácticas que constituyen el itinerario formativo, así como realizar las actividades y autoevaluaciones correspondientes. Al final del itinerario encontrará un examen final o exámenes. A fecha fin de la acción formativa el alumno deberá haber visitado al menos el 100 % de los contenidos, haber realizado al menos el 75 % de las actividades de autoevaluación, haber realizado al menos el 75 % de los exámenes propuestos y los tiempos de conexión alcanzados deberán sumar en torno al 75 % de las horas de la teleformación de su acción formativa. Dicho progreso se contabilizará a través de la plataforma virtual y puede ser consultado en cualquier momento.

La titulación será remitida al alumno por correo postal una vez se haya comprobado que ha completado el proceso de aprendizaje satisfactoriamente.

Requisitos de acceso

Esta formación pertenece al programa de Formación Continua de INESEM. Esta formación se tramita con cargo a un crédito que tienen asignado las empresas privadas españolas para la formación de sus empleados sin que les suponga un coste.

Para tramitar dicha formación es preciso cumplir los siguientes requisitos:

  • Estar trabajando para una empresa privada
  • Encontrarse cotizando en Régimen General de la Seguridad Social
  • Solicitar un curso que esté relacionado con el puesto de trabajo o con la actividad empresarial
  • Que la empresa autorice la formación
  • Que la empresa disponga de suficiente crédito formativo para cubrir el coste del curso

titulación

Titulación de Formación Continua Bonificada expedida por el Instituto Europeo de Estudios Empresariales (INESEM). Titulación de Máster de Formación Permanente en Ciencia de Datos y Aprendizaje Automático con 1500 horas y 60 ECTS expedida por UTAMED - Universidad Tecnológica Atlántico Mediterráneo.

Opiniones de los alumnos

TAMBIÉN PODRÍA INTERESARTE...
Cursos bonificados relacionados
Curso Práctico de Técnicas para Hablar en Público (Online)
Hasta 100% bonificable
Experto en Social Media y Web 2.0
Hasta 100% bonificable
Técnico Profesional en Fidelización de Clientes (Online)
Hasta 100% bonificable
¿Qué es Formación Continua?
POR QUÉ ESTUDIAR EN INESEM
Claustro especializado
Profesores especializados realizarán un seguimiento personalizado al alumno.
campus virtual
Acceso a la plataforma de aprendizaje disponible las 24 horas e ilimitado.
Gestión gratuita
Gestionamos todos los trámites administrativos para la bonificación de la formación.
materiales didácticos
Enviamos gratis los materiales de apoyo en la mayoría de nuestras acciones formativas (envíos a España).
planes formativos a medida
Diseñamos planes de formación adaptados a las necesidades de las empresas.
materiales adicionales
Los alumnos podrán profundizar más con material adicional que su docente le puede aportar.
amplio catálogo formativo
Contamos con más de 5000 cursos y masters bonificables para trabajadores.
Centro de atención al estudiante
Nuestros asesores académicos atenderán al alumnado antes, durante y después de la formación.
consultoría de recursos humanos
Ofrecemos soluciones para el área laboral de tu empresa.
secretaría virtual
Todas las gestiones las podrás hacer vía online, no será necesario hacerlo presencial.
INESEM en cifras
+150.000

alumnos

99%

de empleabilidad

+2.000

acuerdos con empresas

98%

de satisfacción

Universidades colaboradoras